21
Algorithms for finite fields

This chapter discusses efficient algorithms for factoring polynomials over

finite fields, and related problems, such as testing if a given polynomial is

irreducible, and generating an irreducible polynomial of given degree.
Throughout this chapter, F' denotes a finite field of character-

w

istic p and cardinality ¢ = p».

In addition to performing the usual arithmetic and comparison operations
in F', we assume that our algorithms have access to the numbers p, w, and
g, and have the ability to generate random elements of F'. Generating such
a random field element will count as one “operation in F',” along with the
usual arithmetic operations. Of course, the “standard” ways of representing
F as either Z,, (if w = 1), or as the ring of polynomials modulo an irreducible
polynomial over Z, of degree w (if w > 1), satisfy the above requirements,
and also allow for the implementation of arithmetic operations in F' that
take time O(len(q)?) on a RAM (using simple, quadratic-time arithmetic
for polynomials and integers).

21.1 Testing and constructing irreducible polynomials

Let f € F[X] be a monic polynomial of degree ¢ > 0. We develop here an
efficient algorithm that determines if f is irreducible.

The idea is a simple application of Theorem 20.9. That theorem says that
for any integer £ > 1, the polynomial X?" — X is the product of all monic
irreducibles whose degree divides k. Thus, ged(X?—X, f) is the product of all
the distinct linear factors of f. If f has no linear factors, then gcd(Xq2 =X f)
is the product of all the distinct quadratic irreducible factors of f. And so
on. Now, if f is not irreducible, it must be divisible by some irreducible
polynomial of degree at most ¢/2, and if g is an irreducible factor of f

462

21.1 Testing and constructing irreducible polynomials 463

of minimal degree, say k, then we have k < ¢/2 and gcd(qu - X, f) #
1. Conversely, if f is irreducible, then gcd(qu — X, f) = 1 for all positive
integers k up to ¢/2. So to test if f is irreducible, it suffices to check if
gcd(qu — X, f) = 1 for all positive integers k up to ¢/2—if so, we may
conclude that f is irreducible, and otherwise, we may conclude that f is
not irreducible. To carry out the computation efficiently, we note that if
h=X7" (mod f), then ged(h — X, f) = ged(X¢" — X, f).

The above observations suggest the following algorithm, which takes as
input a monic polynomial f € F[X] of degree ¢ > 0, and outputs true if f is
irreducible, and false otherwise:

Algorithm IPT:

h < Xmod f
for k1 to |£/2] do

h «— h?mod f

if ged(h — X, f) # 1 then return false
return true

The correctness of Algorithm IPT follows immediately from the above
discussion. As for the running time, we have:

Theorem 21.1. Algorithm IPT uses O({3len(q)) operations in F.

Proof. Consider an execution of a single iteration of the main loop. The cost
of the gth-powering step (using a standard repeated-squaring algorithm) is
O(len(q)) multiplications modulo f, and so O(¢?len(q)) operations in F.
The cost of the ged computation is O(¢2) operations in F'. Thus, the cost of
a single loop iteration is O(¢%len(q)) operations in F, from which it follows
that the cost of the entire algorithm is O(¢3len(q)) operations in F. O

Algorithm IPT is a “polynomial time” algorithm, since the length of the
binary encoding of the input is about ¢len(q), and so the algorithm runs in
time polynomial in its input length, assuming that arithmetic operations in
F take time polynomial in len(g). Indeed, using a standard representation
for F, each operation in F takes time O(len(q)?) on a RAM, and so the
running time on a RAM for the above algorithm would be O(¢31en(q)?3),
that is, cubic in the bit-length of the input.

Let us now consider the related problem of constructing an irreducible
polynomial of specified degree ¢ > 0. To do this, we can simply use the
result of Theorem 20.11, which has the following probabilistic interpretation:
if we choose a random, monic polynomial f of degree ¢ over F', then the

464 Algorithms for finite fields

probability that f is irreducible is at least 1/2¢. This suggests the following
probabilistic algorithm:

Algorithm RIP:

repeat

choose ag,...,ap_1 € F at random

set f — Xt + Zf;é a; X’

test if f is irreducible using Algorithm IPT
until f is irreducible
output f

Theorem 21.2. Algorithm RIP uses an expected number of O(¢*len(q))
operations in F, and its output is uniformly distributed over all monic irre-
ducibles of degree £.

Proof. Because of Theorem 20.11, the expected number of loop iterations
of the above algorithm is O(¢). Since Algorithm IPT uses O(¢3len(q)) op-
erations in F', the statement about the running time of Algorithm RIP is
immediate. The statement about its output distribution is clear. O

The expected running-time bound in Theorem 21.2 is actually a bit of
an over-estimate. The reason is that if we generate a random polynomial
of degree /¢, it is likely to have a small irreducible factor, which will be
discovered very quickly by Algorithm IPT. In fact, it is known (see §21.7)
that the expected value of the degree of the least degree irreducible factor
of a random monic polynomial of degree ¢ over F' is O(len(¢)), from which it
follows that the expected number of operations in F' performed by Algorithm
RIP is actually O(¢3len(¢) len(q)).

EXERCISE 21.1. Let f € F[X] be a monic polynomial of degree ¢ > 0. Also,
let n := [X]; € E, where E is the F-algebra E := F[X]/(f).
(a) Show how to compute—given as input o € E and n?" € E (for some
integer m > 0)—the value o € E, using just O(£>®) operations in
F, and space for O(¢!®) elements of F. Hint: see Theorems 17.1 and
20.7, as well as Exercise 18.4.

b) Show how to compute—given as input n¢" € E and n?" € E, where
n n

m and m/ are positive integers—the value 7" " € E, using O(¢*5)
operations in F, and space for O(¢1°) elements of F.

(¢) Show how to compute—given as input n? € E and a positive integer
m—the value n?" € E, using O(¢%5len(m)) operations in F, and

21.2 Computing minimal polynomials in F[X]/(f) (III) 465

space for O(¢!-5) elements of F. Hint: use a repeated-squaring-like
algorithm.

EXERCISE 21.2. This exercise develops an alternative irreducibility test.

(a) Show that a monic polynomial f € F[X] of degree ¢ > 0 is irreducible
if and only if X¢° = X (mod f) and ged (X7
s| L.

(b) Using part (a) and the result of the previous exercise, show how
to determine if f is irreducible using O(¢?®len(£)w(¢) + ¢?len(q))
operations in F'; where w(¢) is the number of distinct prime factors
of 4.

(c) Show that the operation count in part (b) can be reduced to
O(£2%len(f) len(w(€)) + £*1en(q)). Hint: see Exercise 3.30.

—X, f) =1 for all primes

EXERCISE 21.3. Design and analyze a deterministic algorithm that takes as
input a list of irreducible polynomials fi,..., f, € F[X], where ¢; := deg(f;)
for i =1,...,r. Assuming that the degrees /1, ..., ¥, are pairwise relatively
prime, your algorithm should output an irreducible polynomial f € F[X] of
degree ¢ := []/_, ¢; using O(¢3) operations in F.

EXERCISE 21.4. Design and analyze a probabilistic algorithm that, given
a monic irreducible polynomial f € F[X] of degree ¢ as input, generates
as output a random monic irreducible polynomial g € F[X] of degree ¢
(i.e., g should be uniformly distributed over all such polynomials), using an
expected number of O(¢2°) operations in F. Hint: use Exercise 19.8 (or
alternatively, Exercise 19.9).

EXERCISE 21.5. Let f € F[X] be a monic irreducible polynomial of degree ¢,
let £ := F[X]/(f), and let 1) := [X]y € E. Design and analyze a deterministic
algorithm that takes as input the polynomial f defining the extension F,
and outputs the values

Sj :’I‘I‘E/F(T/J)EF (.]:O??£_1)7

using O(f?) operations in F. Here, Trg/p is the trace from E to F
(see §20.4). Show that given an arbitrary o € E, along with the values
S0,--.,8¢_1, one can compute TrE/F(a) using just O({) operations in F'.

21.2 Computing minimal polynomials in F[X]/(f) (III)

We consider, for the third and final time, the problem considered in §18.2
and §19.5: f € F[X] is a monic polynomial of degree ¢ > 0, and E :=

466 Algorithms for finite fields

F[X]/(f) = F[n|, where n := [X]s; we are given an element o € E, and
want to compute the minimal polynomial ¢ € F[X] of o over F'. We develop
an alternative algorithm, based on the theory of finite fields. Unlike the
algorithms in §18.2 and §19.5, this algorithm only works when F' is finite
and the polynomial f is irreducible, so that E is also a finite field.

From Theorem 20.15, we know that the degree of o over F' is the smallest
positive integer k£ such that o By successive qth powering, we can
compute the conjugates of «, and determine the degree k, using O(k len(q))
operations in F, and hence O(k¢?len(q)) operations in F.

Now, we could simply compute the minimal polynomial ¢ by directly
using the formula

k—1 ‘

o(Y) = [J(¥—a®). (21.1)

i=0
This would involve computations with polynomials in the variable Y whose
coeflicients lie in the extension field F, although at the end of the compu-
tation, we would end up with a polynomial all of whose coefficients lie in
F. The cost of this approach would be O(k?) operations in E, and hence
O(k%¢?) operations in F.

A more efficient approach is the following. Substituting n for Y in the
identity (21.1), we have

k—1
o(n) = [[(n—).

i=0
Using this formula, we can compute (given the conjugates of «) the value
#(n) € E using O(k) operations in F, and hence O(kf?) operations in F.
Now, ¢(n) is an element of F, and for computational purposes, it is repre-
sented as [g] s for some polynomial g € F[X] of degree less than ¢. Moreover,
(1) = [¢]f, and hence ¢ = g (mod f). In particular, if k£ < ¢, then g = ¢;
otherwise, if K =/, then g = ¢ — f. In either case, we can recover ¢ from g
with an additional O(¢) operations in F'.

Thus, given the conjugates of a, we can compute ¢ using O(kf?) opera-
tions in F. Adding in the cost of computing the conjugates, this gives rise to
an algorithm that computes the minimal polynomial of o using O(k¢?len(q))
operations in F'.

In the worst case, then, this algorithm uses O(¢3len(q)) operations in
F. A reasonably careful implementation needs space for storing a constant
number of elements of F, and hence O(¢) elements of F. For very small
values of ¢, the efficiency of this algorithm will be comparable to that of

21.8 Factoring polynomials: the Cantor—Zassenhaus algorithm 467

the algorithm in §19.5, but for large g, it will be much less efficient. Thus,
this approach does not really yield a better algorithm, but it does serve to
illustrate some of the ideas of the theory of finite fields.

21.3 Factoring polynomials: the Cantor—Zassenhaus algorithm

In the remaining sections of this chapter, we develop efficient algorithms for
factoring polynomials over the finite field F.

The algorithm we discuss in this section is due to Cantor and Zassenhaus.
It has two stages:

Distinct Degree Factorization: The input polynomial is decomposed
into factors so that each factor is a product of distinct irreducibles
of the same degree (and the degree of those irreducibles is also de-
termined).

Equal Degree Factorization: Each of the factors produced in the dis-
tinct degree factorization stage are further factored into their irre-
ducible factors.

The algorithm we present for distinct degree factorization is a determinis-
tic, polynomial-time algorithm. The algorithm we present for equal degree
factorization is a probabilistic algorithm that runs in expected polynomial
time (and whose output is always correct).

21.3.1 Distinct degree factorization

The problem, more precisely stated, is this: given a monic polynomial f €
F[X] of degree £ > 0, produce a list of polynomial/integer pairs (g, k), where

e cach g is a product of distinct monic irreducible polynomials of degree
k, and

e the product of all the polynomials g in the list is equal to f.

This problem can be easily solved using Theorem 20.9, using a simple
variation of the algorithm we discussed in §21.1 for irreducibility testing.
The basic idea is this. We can compute g := ged(X? — X, f), so that g is the
product of all the distinct linear factors of f. We can remove the factor g
from f, but after doing so, f may still contain some linear factors (if the
original polynomial was not square-free), and so we have to repeat the above
step until no linear factors are discovered. Having removed all linear factors
from f, we next compute gcd(Xq2 — X, f), which will be the product of all
the distinct quadratic irreducibles dividing f, and we can remove these from
f—although X9° — X is the product of all linear and quadratic irreducibles,

468 Algorithms for finite fields

since we have already removed the linear factors from f, the gcd will give us
just the quadratic factors of f. As above, we may have to repeat this a few
times to remove all the quadratic factors from f. In general, for k =1,...,¢,
having removed all the irreducible factors of degree less than k from f, we
compute gcd(qu —X, f) to obtain the product of all the distinct irreducible
factors of f of degree k, repeating as necessary to remove all such factors.

The above discussion leads to the following algorithm for distinct degree
factorization, which takes as input a monic polynomial f € F[X] of degree
£>0:

Algorithm DDF:

h «— X mod f
k1
while f # 1 do
h < h? mod f
g ged(h—X, f)
while g # 1 do
output (g, k)
f—1lg
h < h mod f
g <—ged(h—X, f)
k—k+1

The correctness of Algorithm DDF follows from the discussion above. As
for the running time:

Theorem 21.3. Algorithm DDF uses O(¢3len(q)) operations in F.

Proof. Note that the body of the outer loop is executed at most £ times,
since after ¢ iterations, we will have removed all the factors of f. Thus,
we perform at most ¢ gth-powering steps, each of which takes O(¢?len(q))
operations in F', and so the total contribution to the running time of these is
O(f3len(q)) operations in . We also have to take into account the cost of
the ged computations. We perform one ged computation in every iteration
of the main loop, for a total of £ such computations. We also perform
an “extra” gcd computation whenever we discover a non-trivial factor of
f; however, since we only discover at most £ such non-trivial factors, we
perform at most ¢ such “extra” gcd computations. So the total number of
ged computations is at most 2¢, and as each of these takes O(£2) operations
in F, they contribute a term of O(£3) to the total operation count. This

21.8 Factoring polynomials: the Cantor—Zassenhaus algorithm 469

term is dominated by the cost of the gth-powering steps (as is the cost of
the division step in the inner loop), and so the total cost of Algorithm DDF
is O(£3len(q)) operations in F. O

21.3.2 Equal degree factorization

The problem, more precisely stated, is this: given a monic polynomial g €
F[X] of degree £ > 0, and an integer k > 0, such that g is of the form

g=g1-gr

for distinct monic irreducible polynomials g1, ..., g,, each of degree k, com-
pute these irreducible factors of g. Note that given ¢ and k, the value of r
is easily determined, since r = ¢/k.

We begin by discussing the basic mathematical ideas that will allow us
to efficiently split g into two non-trivial factors, and then we present a
somewhat more elaborate algorithm that completely factors g.

By the Chinese remainder theorem, we have an F-algebra isomorphism

0:F1x---xXE.—FE,

where for i = 1,...,r, E; is the extension field F[X]/(g;) of degree k over F,
and E is the F-algebra F[X]/(g).
Recall that ¢ = p". We have to treat the cases p = 2 and p > 2 separately.
We first treat the case p = 2. Let us define the polynomial
wk—1)
My =Y ¥ € F[x]. (21.2)
§=0

(The algorithm in the case p > 2 will only differ in the definition of Mj.)
Fora € E, if « =0(aq,...,q,), then we have

Mk(Oé) = G(Mk(al), ceny Mk(ar))

Note that each Fj; is an extension of Zy of degree wk, and that

wk—1 _

Mi(oi) = Z O‘z‘QJ = TrEi/Z2(O‘i),

§=0
where ’I‘I‘Ei/ZQ : By — Zo is the trace from E; to Zo, which is a surjective,
Za-linear map (see §20.4).

Now, suppose we choose @ € E at random. Then if o = 0(ay,...,a;),

the a; will be independently distributed, with each «; uniformly distributed

470 Algorithms for finite fields

over E;. It follows that the values My (a;) will be independently and uni-
formly distributed over Zy. Thus, if a := rep(Mg(«)) (i.e., a € F[X] is the
polynomial of degree less than ¢ such that My (o) = [al],), then ged(a, g) will
be the product of those factors g; of g such that My(a;) = 0. We will fail
to get a non-trivial factorization only if the My(c;) are either all 0 or all 1,
which for » > 2 happens with probability at most 1/2 (the worst case being
when r = 2).

That is our basic splitting strategy. The algorithm for completely factor-
ing g works as follows. The algorithm proceeds in stages. At any stage, we
have a partial factorization g = [[,cy h, where H is a set of non-constant,
monic polynomials. Initially, H = {g}. With each stage, we attempt to get
a finer factorization of g by trying to split each h € H using the above split-
ting strategy—if we succeed in splitting h into two non-trivial factors, then
we replace h by these two factors. We continue in this way until |[H| = r.

Here is the full equal degree factorization algorithm. It takes as input a
monic polynomial g € F'[X] of degree ¢ > 0, and an integer k£ > 0, such that
g is the product of r := ¢/k distinct monic irreducible polynomials, each of
degree k. With M}, as defined in (21.2), the algorithm runs as follows:

Algorithm EDF:

H —{g}
while |H| < r do
H 0
for each h € H do
choose o € F[X]/(h) at random
d « ged(rep(My (), h)
ifd=1lord=nh
then H' — H' U {h}
else H «— H' U{d,h/d}
H «— H’
output H

The correctness of the algorithm is clear from the above discussion. As
for its expected running time, we can get a quick-and-dirty upper bound as
follows:

e For a given h, the cost of computing My(a) for a € F[X]/(h) is
O(k deg(h)?len(q)) operations in F', and so the number of operations
in F performed in each iteration of the main loop is at most a constant

21.8 Factoring polynomials: the Cantor—Zassenhaus algorithm 471

times

2
klen(q)) deg(h)® < klen(q) <Z deg(h)> = k0% len(q).

heH heH

e The expected number of iterations of the main loop until we get some
non-trivial split is O(1).
e The algorithm finishes after getting » — 1 non-trivial splits.

e Therefore, the total expected cost is O(rkf?len(q)), or O(£3len(q)),
operations in F.

This analysis gives a bit of an over-estimate—it does not take into account
the fact that we expect to get fairly “balanced” splits. For the purposes
of analyzing the overall running time of the Cantor—Zassenhaus algorithm,
this bound suffices; however, the following analysis gives a tight bound on
the complexity of Algorithm EDF.

Theorem 21.4. In the case p = 2, Algorithm EDF uses an expected number
of O(kf*1en(q)) operations in F.

Proof. We may assume r > 2. Let L be a random variable that denotes the
number of iterations of the main loop of the algorithm.

We claim that E[L] = O(len(r)). To prove this claim, we make use of the
fact (see Theorem 6.25) that

E[L] =) P[L>1].

Fori=1,...,7rand j =i+1,...,r, define L;; to be the number of iterations
of the main loop in which the factors g; and g; remain unseparated at the
beginning of the loop. Now, if g; and g; have not been separated at the
beginning of one loop iteration, then they will be separated at the beginning
of the next with probability 1/2. It follows that

P[Lij > t] <271,
Also note that L >t implies that L;; > t for some 7, j, and hence

PL>#]<) > PlLy>t<ri2"
i=1 j=i+1

472 Algorithms for finite fields

So we have

E[L] =) P[L>1

t>1
= Y PL=tl+) PL=>t
t<2log, r t>2logy
< 2logyr + Z r227t
t>2logy
< 2logyr + ZQ‘t
>0
= 2logy T + 2.

That proves the claim.

As discussed in the paragraph above this theorem, the cost of each it-
eration of the main loop is O(k¢?len(q)) operations in F. Combining this
with the fact that E[L] = O(len(r)), it follows that the expected number
of operations in F' for the entire algorithm is O(len(r)k¢?len(q)). This is
significantly better than the above quick-and-dirty estimate, but is not quite
the result we are after—we have to get rid of the factor len(r). There are a
number of ways to do this. We sketch one such way, which is a bit ad hoc,
but sufficient for our purposes.

Let us define
S = Z Z Ll]

i=1 j=i+1
We claim that the total work performed by the algorithm in attempting to
split non-irreducible factors of g is

O(Sk3len(q)).

To see why this is so, consider one iteration of the inner loop of the algorithm,
where we are trying to split a factor h of g, where h is the product of
two or more irreducible factors of g. Let us write h = g;, ---g;,, where
2 < n < r. On the one hand, the number of operations in F' performed
in this step is at most ck deg(h)?len(q) for some constant ¢, which we may
write as en? - k3 len(g). On the other hand, each pair of indices (i;, i), with
1 < j < 7' < n, contributes 1 to the sum defining S, for a total contribution
from pairs at this step of n(n — 1)/2 > n?/4. The claim now follows.
Algorithm EDF is a little silly in that it wastes time trying to split irre-
ducible factors (and although it would be trivial to modify the algorithm to
avoid this, the asymptotic running time would not be affected significantly).

21.8 Factoring polynomials: the Cantor—Zassenhaus algorithm 473

It is easy to see that attempting to split a single irreducible factor takes
O(K3len(q)) operations in F', and hence the total amount of work wasted in
this way is O(Lrk3len(q)).

We next claim that E[L;;] = O(1), for all ¢, j. Indeed,

E[L;] = Z P[Lij > t] < Z 27" =2,
=1 1>1

It follows that

E[S] = Z E[Lij] = O(r?).

Therefore, the expected number of operations in F' performed by the algo-
rithm is at most a constant times

E[S]k? len(q) + E[L]rk3len(q) = O(r*k*len(q) + rlen(r)k> len(q)),
which is O(k¢?len(q)). O
That completes the discussion of Algorithm EDF in the case p = 2.

The case p > 2

Now assume that p > 2, so that p, and hence also ¢, is odd. Algorithm EDF
in this case is exactly the same as above, except that in this case, we define
the polynomial My as

My =x9"-D/2 _1 ¢ F[x). (21.3)
Just as before, for a € E with o = 0(av, ...,), we have
M) = 6(My(on), .., Mi(on)).

Note that each group E} is a cyclic group of order ¢" — 1, and therefore, the
image of the (¢* — 1)/2-power map on E} is {+1}.

Now, suppose we choose a € E at random. Then if &« = 0(ay, ...,), the
a; will be independently distributed, with each a; uniformly distributed over
E;. Tt follows that the values My (c;) will be independently distributed. If
a; = 0, which happens with probability 1/¢*, then My (a;) = —1; otherwise,

(g"-1)/2

a; is uniformly distributed over {£1}, and so Mj(«;) is uniformly

distributed over {0, —2}. That is to say,
0 with probability (¢* —1)/24",
M (o;) = { —1 with probability 1/¢,
—2 with probability (¢* —1)/2q".

Thus, if a := rep(My(«)), then ged(a, g) will be the product of those factors

474 Algorithms for finite fields

gi of g such that My(c;) = 0. We will fail to get a non-trivial factorization
only if the Mj,(«;) are either all zero or all non-zero. Assume r > 2. Consider
the worst case, namely, when » = 2. In this case, a simple calculation shows
that the probability that we fail to split these two factors is

k 2 k 2
g —1 ¢ +1 1 2%
—) ==(1+1 :
<2qk)+<2qk> gt +1/2%)
The (very) worst case is when ¢* = 3, in which case the probability of failure

is at most 5/9.
The same quick-and-dirty analysis given just above Theorem 21.4 applies

here as well, but just as before, we can do better:

Theorem 21.5. In the case p > 2, Algorithm EDF uses an expected number
of O(k¢*len(q)) operations in F.

Proof. The analysis is essentially the same as in the case p = 2, except that
now the probability that we fail to split a given pair of irreducible factors
is at most 5/9, rather than equal to 1/2. The details are left as an exercise
for the reader. O

21.3.3 Analysis of the whole algorithm

Given an arbitrary polynomial f € F[X] of degree £ > 0, the distinct degree
factorization step takes O(£3len(q)) operations in F. This step produces
a number of polynomials that must be further subjected to equal degree
factorization. If there are s such polynomials, where the ¢th polynomial has
degree ¢;, for i = 1,...,s, then > .7, ¢; = £. Now, the equal degree factor-
ization step for the ith polynomial takes an expected number of O(¢3 len(q))
operations in F' (actually, our initial, “quick and dirty” estimate is good
enough here), and so it follows that the total expected cost of all the equal
degree factorization steps is O(>", £3len(q)), which is O(£3len(q)), opera-
tions in F'. Putting this all together, we conclude:

Theorem 21.6. The Cantor-Zassenhaus factoring algorithm uses an ex-
pected number of O(£3len(q)) operations in F.

This bound is tight, since in the worst case, when the input is irreducible,
the algorithm really does do this much work.

EXERCISE 21.6. Show how to modify Algorithm DDF so that the main loop
halts as soon as 2k > deg(f).

21.4 Factoring polynomials: Berlekamp’s algorithm 475

EXERCISE 21.7. This exercise extends the techniques developed in Exer-
cise 21.1. Let f € FI[X] be a monic polynomial of degree ¢ > 0, and let
n:= [X]; € E, where E := F[X]/(f). For integer m > 0, define polynomials
T =X+XI++X" € FX] and Ny :=X-X¢---- X" e FIx.

(a) Show how to compute—given as input n¢" € E and nqm/, where m
and m’ are positive integers, along with T,,,(«) and T,/ (), for some
o € E—the values n9""" and Ty, (@), using O(¢25) operations

in F, and space for O(¢!®) elements of F.

(b) Using part (a), show how to compute—given as input n¢ € E, « €
E, and a positive integer m—the value T}, (), using O(£*®len(m))
operations in F, and space for O(¢!-5) elements of F.

(c) Repeat parts (a) and (b), except with “N” in place of “T.”

EXERCISE 21.8. Using the result of the previous exercise, show how to im-
plement Algorithm EDF so that it uses an expected number of

O(len(k)£*® 4 ¢*len(q))
operations in F', and space for O(¢!®) elements of F.

EXERCISE 21.9. This exercise depends on the concepts and results in §19.6.
Let E be an extension field of degree £ over F, specified by an irreducible
polynomial of degree ¢ over F'. Design and analyze an efficient probabilis-
tic algorithm that finds a normal basis for E over F' (see Exercise 20.14).
Hint: there are a number of approaches to solving this problem; one way
is to start by factoring X! — 1 over F, and then turn the construction in
Theorem 19.7 into an efficient probabilistic procedure; if you mimic Ex-
ercise 11.2, your entire algorithm should use O(¢3len(¢)len(q)) operations
in F (or O(len(r)¢3len(q)) operations, where 7 is the number of distinct
irreducible factors of X! — 1 over F).

21.4 Factoring polynomials: Berlekamp’s algorithm

We now develop an alternative algorithm, due to Berlekamp, for factoring
a polynomial over the finite field F'.

This algorithm usually starts with a pre-processing phase to reduce the
problem to that of factoring square-free polynomials. There are a number
of ways to carry out this step. We present a simple-minded method here
that is sufficient for our purposes.

476 Algorithms for finite fields

21.4.1 A simple square-free decomposition algorithm

Let f € F[X] be a monic polynomial of degree ¢ > 0. Suppose that f is
not square-free. According to Theorem 20.4, d := ged(f,D(f)) # 1, and
so we might hope to get a non-trivial factorization of f by computing d;
however, we have to consider the possibility that d = f. Can this happen?
The answer is “yes,” but if it does happen that d = f, we can still get a
non-trivial factorization of f by other means:

Theorem 21.7. Suppose that f € F[X] is a polynomial of degree £ > 0, and
that ged(f,D(f)) = f. Then f = g(XP) for some g € F[X|. Moreover, if

g=>;biX’, then f = hP, where h=>", b‘f(w_l)Xi

Proof. Since deg(D(f)) < deg(f), if ged(f,D(f)) = f, then we must have
D(f)=0.If f = Zf:o a;X!, then D(f) = Zle ia;X"~!. Since this deriva-
tive must be zero, it follows that all the coefficients a; with i # 0 (mod p)
must be zero to begin with. That proves that f = g(XP) for some g € F[X].
Furthermore, if h is defined as above, then

hP = (Z bf(w_l)xi>p =)0 =) (X = g(XP) = f. O

This suggests the following recursive algorithm. The input is the polyno-
mial f as above, and a parameter s, which is set to 1 on the initial invoca-
tion. The output is a list of pairs (g;, s;) such that each g; is a square-free,
non-constant polynomial over F' and f =[], g;".

Algorithm SFD:

d — ged(f,D(f))

if d =1 then
output (f,s)

else if d # f then
recursively process (d, s) and (f/d, s)

else
let f =X+ Zf;(l) a;X" // mote that a; = 0 except when p | i
set h «— XU/P 4 Zfi%_l(api)pw_lxi // note that h = f1/»
recursively process (h, ps)

The correctness of Algorithm SFD follows from the discussion above. As
for its running time:

Theorem 21.8. Algorithm SFD uses O(3 + ¢(w — 1) len(p)/p) operations
i F.

21.4 Factoring polynomials: Berlekamp’s algorithm 477

Proof. For input polynomial f with deg(f) > 0, let R(f) denote the number
of recursive invocations of the algorithm, and let P(f) denote the number
of p~1th powers in F' computed by the algorithm. It is easy to see that the
number of operations in F' performed by the algorithm is

O(R(f)deg(f)* + P(f)(w — 1) len(p)).

The theorem will therefore follow from the following two inequalities:
R(f) < 2deg(f) 1 (21.4)

and

P(f) < 2deg(f)/p- (21.5)

We prove (21.4) by induction of deg(f). We assume (21.4) holds for all
input polynomials of degree less than that of f, and prove that it holds for
f. Let d := ged(f,D(f)). If d =1, then R(f) =1 <2deg(f)—1. Ifd#1
and d # f, then applying the induction hypothesis, we have

R(f) =1+ R(d) + R(f/d) <1+ (2deg(d) — 1) + (2deg(f/d) — 1)
= 2deg(f) — 1.

Finally, if d = f, then again applying the induction hypothesis, we have
R(f) =1+ R(fY?) <1+ (2deg(f)/p — 1) < deg(f) < 2deg(f) — 1.

The inequality (21.5) is proved similarly by induction. We assume (21.5)
holds for all input polynomials of degree less than that of f, and prove that
it holds for f. Let d := ged(f,D(f)). If d =1, then P(f) =0 < 2deg(f)/p.
If d # 1 and d # f, then applying the induction hypothesis, we have

P(f) = P(d) + P(f/d) < 2deg(d)/p + 2deg(f/d)/p = 2 deg(f)/p
Finally, if d = f, then again applying the induction hypothesis, we have

P(f) = deg(f)/p+ P(f"?) < deg(f)/p + 2deg(f)/p* < 2deg(f)/p. O

The running-time bound in Theorem 21.8 is essentially tight (see Exer-
cise 21.10 below). Although it suffices for our immediate purpose as a pre-
processing step in Berlekamp’s factoring algorithm, Algorithm SFD is by no
means the most efficient algorithm possible for square-free decomposition of
polynomials. We return to this issue below, in §21.6.

478 Algorithms for finite fields

21.4.2 The main factoring algorithm

Let us now assume we have a monic square-free polynomial f of degree £ > 0
that we want to factor into irreducibles, such as is output by the square-free
decomposition algorithm above. We first present the mathematical ideas
underpinning the algorithm.

Let E be the F-algebra F[X]/(f). We define a subset B of E as follows:

B:={ac E:a?=a}.

It is easy to see that B is a subalgebra of . Indeed, for o, 3 € B, we have
(a+5)? = al4 41 = a+ 3, and similarly, (a3)? = @487 = af. Furthermore,
one sees that ¢? = ¢ for all ¢ € F', and hence B is a subalgebra.

The subalgebra B is called the Berlekamp subalgebra of FE. Let us
take a closer look at it. Suppose that f factors into irreducibles as

IF=h— I
and let
0:F1 x---xE.—F

be the F-algebra isomorphism from the Chinese remainder theorem, where
E; := F[X]/(f:;) is an extension field of F' of finite degree for i = 1,...,r.
Now, for a = §(a,...,a,) € E, we have a? = « if and only if ag = o for
1 =1,...,r; moreover, by Theorem 20.8, we know that for any «; € E;, we
have o = «; if and only if ; € F. Thus, we may characterize B as follows:

B={6(c1,...,¢;):c1,...,¢, € F}.

Since B is a subalgebra of F, then as F-vector spaces, B is a subspace of
E. Of course, F has dimension £ over F, with the natural basis 1,n,...,1n° !,
where 7 := [X]y. As for the Berlekamp subalgebra, from the above charac-

terization of B, it is evident that
6(1,0,...,0), 6(0,1,0,...,0), ..., 0(0,...,0,1)

is a basis for B over F', and hence, B has dimension r over F'.
Now we come to the actual factoring algorithm.

Stage 1: Construct a basis for B

The first stage of Berlekamp’s factoring algorithm constructs a basis for B
over F'. We can easily do this using Gaussian elimination, as follows. Let
p: E — FE be the map that sends o € E to a?— «. Since the qth power map
on F is an F-algebra homomorphism (see Theorem 20.7)—and in particular,
an F-linear map—the map p is also F-linear. Moreover, the kernel of p is

21.4 Factoring polynomials: Berlekamp’s algorithm 479

none other than the Berlekamp subalgebra B. So to find a basis for B, we
simply need to find a basis for the kernel of p using Gaussian elimination
over F', as in §15.4.

To perform the Gaussian elimination, we need to choose an ordered basis
for E over F, and construct a matrix Q € F®*¢ that represents p with
respect to that ordered basis as in §15.2, so that evaluation of p corresponds
to multiplying a row vector on the right by . We are free to choose
an ordered basis in any convenient way, and the most convenient ordered
basis, of course, is (1,7,... ,775*1), as this directly corresponds to the way
we represent elements of E for computational purposes. Let us define the
F-vector space isomorphism

€: F> g
(21.6)

(ag,...,ap—1) — ag+a1n+---+ap_1n°" L
The maps € and e~ ! are best thought of as “type conversion operators”
that require no actual computation to evaluate. The matrix @), then, is the
¢ x ¢ matrix whose ith row, for i = 1,...,¢, is e *(p(n°~')). Note that if
a:=n?, then p(y' ') = (n" 1) ==t = (n?)"' ="' = o=t — '~ 1. This
observation allows us to construct the rows of @) by first computing « as n?
via repeated squaring, and then just computing successive powers of a.
After we construct the matrix @}, we apply Gaussian elimination to get
row vectors vi, ..., v, that form a basis for the row null space of Q). It is at
this point that our algorithm actually discovers the number r of irreducible
factors of f. We can then set 3; := €(v;) fori = 1,...,r to get our basis for B.
Putting this altogether, we have the following algorithm to compute a
basis for the Berlekamp subalgebra. It takes as input a monic square-free
polynomial f of degree £ > 0. With E := F[X]/(f), n:= [X]; € E, and € as
defined in (21.6), the algorithm runs as follows:

Algorithm B1:

let @ be an ¢ x ¢ matrix over F' (initially with undefined entries)

compute « <« n? using repeated squaring

B 1g

fori < 1to ¢ do // invariant: B = oi~t = (ni=1)4
Q) — e 1(B), Qi) — Q(i,i) =1, B fa

compute a basis v, ..., v, of the row null space of () using
Gaussian elimination

fori=1,...,7 do B <« €(vi)

output 31,..., 05,

480 Algorithms for finite fields

The correctness of Algorithm B1 is clear from the above discussion. As
for the running time:

Theorem 21.9. Algorithm B1 uses O(¢3 + ¢*len(q)) operations in F.

Proof. This is just a matter of counting. The computation of o takes
O(len(q)) operations in E using repeated squaring, and hence O(¢?len(q))
operations in F. To build the matrix), we have to perform an additional
O(?) operations in F to compute the successive powers of «, which trans-
lates into O(£3) operations in F. Finally, the cost of Gaussian elimination
is an additional O(¢3) operations in F. O

Stage 2: Splitting with B
The second stage of Berlekamp’s factoring algorithm is a probabilistic proce-
dure that factors f using a basis (1, ..., 3, for B. As we did with Algorithm
EDF in §21.3.2, we begin by discussing how to efficiently split f into two
non-trivial factors, and then we present a somewhat more elaborate algo-

rithm that completely factors f.
Let M; € F[X] be the polynomial defined by (21.2) and (21.3); that is,

M, = Y x¥ ifp=2,
‘ x@D/2_1 ifp>a2.

Using our basis for B, we can easily generate a random element § of B
by simply choosing ci,...,¢, at random, and computing 3 := Y. ¢;0;. If
B =10(by,...,b,), then the b; will be uniformly and independently distributed
over F. Just as in Algorithm EDF, ged(rep(Mi(5)), f) will be a non-trivial
factor of f with probability at least 1/2, if p = 2, and probability at least
4/9,if p > 2.

That is the basic splitting strategy. We turn this into an algorithm to
completely factor f using the same technique of iterative refinement that
was used in Algorithm EDF. That is, at any stage of the algorithm, we have
a partial factorization f = [[,cy h, which we try to refine by attempting
to split each h € H using the strategy outlined above. One technical dif-
ficulty is that to split such a polynomial h, we need to efficiently generate
a random element of the Berlekamp subalgebra of F[X]/(h). A particularly
efficient way to do this is to use our basis for the Berlekamp subalgebra
of F[X]/(f) to generate a random element of the Berlekamp subalgebra of
F[X]/(h) for all h € H simultaneously. Let g; := rep(f;) for i = 1,...,r.
If we choose c1,...,¢. € F at random, and set g := c1g1 + - -+ + ¢-g,, then
lg]f is a random element of the Berlekamp subalgebra of F[X]/(f), and by

21.4 Factoring polynomials: Berlekamp’s algorithm 481

the Chinese remainder theorem, it follows that the values [g], for h € H
are independently distributed, with each [g];, uniformly distributed over the
Berlekamp subalgebra of F'[X]/(h).

Here is the algorithm for completely factoring a polynomial, given a basis
for the corresponding Berlekamp subalgebra. It takes as input a monic,
square-free polynomial f of degree £ > 0, together with a basis 31, ..., 3, for
the Berlekamp subalgebra of F[X]/(f). With g; := rep(f;) for i = 1,...,r,
the algorithm runs as follows:

Algorithm B2:

H—{f}

while |H| < r do
choose ¢y, ...,c. € F at random
g cigr -+ egr € FIX]
H 0

for each h € H do
B — lgln € FIX]/(h)
d «— ged(rep(M1(8)), h)
ifd=1lord=h
then H' — H' U {h}
else H' — H'U{d,h/d}
H— H
output H

The correctness of the algorithm is clear. As for its expected running
time, we can get a quick-and-dirty upper bound as follows:

e The cost of generating g in each loop iteration is O(rf) operations
in F. For a given h, the cost of computing 8 := [g], € F[X]/(h)
is O(¢deg(h)) operations in F', and the cost of computing M;(3) is
O(deg(h)?len(q)) operations in F. Therefore, the number of opera-
tions in F' performed in each iteration of the main loop is at most a
constant times

rl+0) " deg(h) +len(q) Y deg(h)?

heH heH

2
< 2% 4 len(q) (Z deg(h)) = O(#*len(q)).

e The expected number of iterations of the main loop until we get some
non-trivial split is O(1).

482 Algorithms for finite fields

e The algorithm finishes after getting r — 1 non-trivial splits.
e Therefore, the total expected cost is O(r¢?len(q)) operations in F.

A more careful analysis reveals:

Theorem 21.10. Algorithm B2 uses an expected number of
O(len(r)¢?len(q))

operations in F.

Proof. The proof follows the same line of reasoning as the analysis of Al-
gorithm EDF. Indeed, using the same argument as was used there, the
expected number of iterations of the main loop is O(len(r)). As discussed in
the paragraph above this theorem, the cost per loop iteration is O(¢2 len(q))
operations in F'. The theorem follows. O

The bound in the above theorem is tight (see Exercise 21.11 below): unlike
Algorithm EDF, we cannot make the multiplicative factor of len(r) go away.

21.4.3 Analysis of the whole algorithm

Putting together Algorithm SFD with algorithms Bl and B2, we get
Berlekamp’s complete factoring algorithm. The running time bound is easily
estimated from the results already proved:

Theorem 21.11. Berlekamp’s factoring algorithm uses an expected number
of O(£3 + (*len(¢)len(q)) operations in F.

So we see that Berlekamp’s algorithm is in fact faster than the Cantor—
Zassenhaus algorithm, whose expected operation count is O(¢3len(q)). The
speed advantage of Berlekamp’s algorithm grows as ¢ gets large. The one
disadvantage of Berlekamp’s algorithm is space: it requires space for ©(¢?)
elements of F', while the Cantor—Zassenhaus algorithm requires space for
only O(¢) elements of F'. One can in fact implement the Cantor-Zassenhaus
algorithm so that it uses O(¢3 +¢?len(q)) operations in F, while using space
for only O(¢%) elements of F—see Exercise 21.13 below.

EXERCISE 21.10. Give an example of a family of input polynomials f that
cause Algorithm SFD to use at least 2(£3) operations in F, where ¢ :=

deg(f).

EXERCISE 21.11. Give an example of a family of input polynomials f that
cause Algorithm B2 to use an expected number of at least Q(£2 len(¢) len(q))
operations in F', where ¢ := deg(f).

21.5 Deterministic factorization algorithms (x) 483

EXERCISE 21.12. Using the ideas behind Berlekamp’s factoring algorithm,
devise a deterministic irreducibility test that, given a monic polynomial of
degree ¢ over F, uses O(¢3 + (*len(q)) operations in F.

EXERCISE 21.13. This exercise develops a variant of the Cantor—Zassenhaus
algorithm that uses O(¢3 + ¢?len(q)) operations in F', while using space for
only O(¢}?) elements of F. By making use of Algorithm SFD (which with
a bit of care can be implemented so as to use space for O(¢) elements of F')
and the variant of Algorithm EDF discussed in Exercise 21.8, our problem
is reduced to that of implementing Algorithm DDF within the stated time
and space bounds, assuming that the input polynomial is square-free.

(a) For non-negative integers i, j, with ¢ # j, show that the irreducible
polynomials in F[X] that divide X9 — X' are precisely those whose
degree divides i — j.

(b) Let f € F[X] be a monic polynomial of degree £ > 0, and let m ~ ¢/2.
Let n:= [X]f € E, where E := F[X]/(f). Show how to compute

m— 2m q(mfl)m

nin®, o e E and 7" %",y €E

using O(£3+¢2len(q)) operations in F, and space for O(¢%) elements
of F.

(c) Combine the results of parts (a) and (b) to implement Algorithm
DDF on square-free inputs of degree £, so that it uses O(£3+/¢2len(q))
operations in F, and space for O(¢!-5) elements of F.

21.5 Deterministic factorization algorithms (x)

The algorithms of Cantor and Zassenhaus and of Berlekamp are probabilis-
tic. The exercises below develop a deterministic variant of the Cantor—
Zassenhaus algorithm. (One can also develop deterministic variants of
Berlekamp’s algorithm, with similar complexity.)

This algorithm is only practical for finite fields of small characteristic, and
is anyway mainly of theoretical interest, since from a practical perspective,
there is nothing wrong with the above probabilistic method. In all of these
exercises, we assume that we have access to a basis €1,...,¢6, for F' as a
vector space over Zp.

To make the Cantor—Zassenhaus algorithm deterministic, we only need
to develop a deterministic variant of Algorithm EDF, as Algorithm DDF is
already deterministic.

484 Algorithms for finite fields

EXERCISE 21.14. Let g = g1--- gy, where the g; are distinct monic irre-
ducible polynomials in F[X]. Assume that » > 1, and let ¢ := deg(g). For
this exercise, the degrees of the g; need not be the same. For an intermediate
field F’, with Z,, C F' C F, let us call a set S = {\1,..., As} of polynomials
in F[X], a separating set for g over F’ if the following conditions hold:
e fori =1,...,7r and u = 1,...,s, there exists ¢,; € F’ such that
Ay = ¢y (mod g;), and
e for any distinct pair of indices ¢, j, with 1 < ¢ < j < r, there exists
u=1,...,s such that cy; # cy;.
Show that if S is a separating set for g over Z,, then the following algorithm
completely factors g using O(p|S|¢?) operations in F.

H —{g}
for each A € S do

for each a € Z, do
H 0
for each h € H do
d — ged(A —a, h)
ifd=1lord=nh
then H' — H' U {h}
else H' — H'U{d,h/d}
H«— H
output H

EXERCISE 21.15. Let g be as in the previous exercise. Show that if S is a
separating set for g over F', then the set

w—1
S = {Z(Ej/\)pl modg:1<j<w, €S}
=0

is a separating set for g over Z,. Show how to compute this set using
O(|S|¢% len(p)w(w — 1)) operations in F'.

EXERCISE 21.16. Let g be as in the previous two exercises, but further
suppose that each irreducible factor of g is of the same degree, say k. Let
E := F[X]/(g) and n := [X]; € E. Define the polynomial ¢ € E[Y] as follows:

k-1

¢ =[x —n").

i=0
If
¢ =Y+ ap Y 4+ a,

21.6 Faster square-free decomposition (x) 485
with ag,...,ar_1 € E, show that the set
S :={rep(a;): 0<i<k—1}

is a separating set for g over F', and can be computed deterministically using
O(k? + klen(q)) operations in E, and hence O(k%¢% + kf?len(q)) operations
in F.

EXERCISE 21.17. Put together all of the above pieces, together with Algo-
rithm DDF, so as to obtain a deterministic algorithm for factoring polyno-
mials over F' that runs in time at most p times a polynomial in the input
length, and make a careful estimate of the running time of your algorithm.

EXERCISE 21.18. It is a fact that when our prime p is odd, then for all
integers a,b, with a Z b (mod p), there exists a non-negative integer
i < p'/?logyp such that (a +i | p) # (b+i | p) (here, “(- |)” is the
Legendre symbol). Using this fact, design and analyze a deterministic algo-

1/2

rithm for factoring polynomials over F' that runs in time at most p/* times

a polynomial in the input length.

The following two exercises show that the problem of factoring polyno-
mials over F' reduces in deterministic polynomial time to the problem of
finding roots of polynomials over Z,.

EXERCISE 21.19. Let g be as in Exercise 21.14. Suppose that § =
{A1,...,As} is a separating set for g over Z,, and ¢, € F[X] is the min-
imal polynomial over F of [A,], € F[X]/(g) for u=1,...,s. Show that each
¢y is the product of linear factors over Z,, and that given S along with
the roots of all the ¢,, we can deterministically factor g using (|S| 4 £)°™)
operations in F'. Hint: see Exercise 17.9.

EXERCISE 21.20. Using the previous exercise, show that the problem of fac-
toring a polynomial over a finite field F' reduces in deterministic polynomial
time to the problem of finding roots of polynomials over the prime field of F.

21.6 Faster square-free decomposition (x)

The algorithm presented in §21.4.1 for square-free decomposition was simple
and suitable for our immediate purposes, but is certainly not the most effi-
cient algorithm possible. The following exercises develop a faster algorithm
for this problem.

We begin with an exercise that more fully develops the connection be-

486 Algorithms for finite fields

tween square-free polynomials and formal derivatives for polynomials over
arbitrary fields:

EXERCISE 21.21. Let K be a field, and let f € K[X] with deg(f) > 0.

(a) Show that if D(f) = 0, then the characteristic of K must be a prime
p, and f must be of the form f = g(XP) for some g € K[X].

(b) Show that if K is a finite field or a field of characteristic zero, then
f is square-free if and only if d := ged(f,D(f)) = 1; moreover, if
d # 1, then either deg(d) < deg(f), or K has prime characteristic p
and f = hP for some h € K[X].

(¢) Give an example of a field K of characteristic p and an irreducible
polynomial f € K[X] such that f = g(XP) for some g € K[X].

Next, we consider the problem of square-free decomposition of polynomi-
als over fields of characteristic zero, which is simpler than the corresponding
problem over finite fields.

EXERCISE 21.22. Let f € K[X] be a monic polynomial over a field K of
characteristic zero. Suppose that the factorization of f into irreducibles is

F= g g
Show that

I
ged(f, D(/))

EXERCISE 21.23. Let K be a field of characteristic zero. Consider the fol-

lowing algorithm that takes as input a monic polynomial f € K[X] of degree
£>0:

j—1 g< f/eged(f,D(f))
repeat

f—1f/g, hged(f,g), m<g/h
if m # 1 then output (m, j)
g—h, j—j+1

until g =1

=fifr

Using the result of the previous exercise, show that this algorithm outputs
a list of pairs (g;, s;), such that each g; is square-free, f =[], ¢;*, and the g;
are pairwise relatively prime. Furthermore, show that this algorithm uses
O(#?) operations in K.

We now turn our attention to square-free decomposition over finite fields.

21.7 Notes 487

EXERCISE 21.24. Let f € F[X] be a monic polynomial over F' (which, as
usual, has characteristic p and cardinality ¢ = p"). Suppose that the fac-
torization of f into irreducibles is

F=r
Show that

P |
wagogy - AL

1<i<r
e;#0 (mod p)
EXERCISE 21.25. Consider the following algorithm that takes as input a
monic polynomial f € F[X] of degree £ > 0:

s—1
repeat
j 1, g f/gd(f,D(f))
repeat
[f/g, h+gcd(f,g), m+g/h
if m # 1 then output (m, js)
g—h, j—j+1
until g =1
if f # 1 then // f is a pth power
// we compute a pth root as in Algorithm SFD
fe o, s —ps
until f =1

Using the result of the previous exercise, show that this algorithm outputs
a list of pairs (g;, s;), such that each g; is square-free, f =[], ¢;*, and the g;
are pairwise relatively prime. Furthermore, show that this algorithm uses
O(? + £(w — 1) len(p)/p) operations in F.

21.7 Notes

The average-case analysis of Algorithm IPT, assuming its input is random,
and the application to the analysis of Algorithm RIP, is essentially due to
Ben-Or [14]. If one implements Algorithm RIP using fast polynomial arith-
metic, one gets an expected cost of O(£21°(1) len(q)) operations in F. Note
that Ben-Or’s analysis is a bit incomplete—see Exercise 32 in Chapter 7 of
Bach and Shallit [12] for a complete analysis of Ben-Or’s claims.

The asymptotically fastest probabilistic algorithm for constructing an ir-
reducible polynomial over F' of degree ¢ is due to Shoup [91]. That algorithm
uses an expected number of O(¢2+°() 4 ¢1+o(M) Jen(q)) operations in F, and

488 Algorithms for finite fields

in fact does not follow the “generate and test” paradigm of Algorithm RIP,
but uses a completely different approach. Exercise 21.2 is based on [91].

As far as deterministic algorithms for constructing irreducible polynomials
of given degree over F, the only known methods are efficient when the
characteristic p of F' is small (see Chistov [26], Semaev [83], and Shoup
[89]), or under a generalization of the Riemann hypothesis (see Adleman and
Lenstra [4]). Shoup [89] in fact shows that the problem of constructing an
irreducible polynomial of given degree over F' is deterministic, polynomial-
time reducible to the problem of factoring polynomials over F'.

The algorithm in §21.2 for computing minimal polynomials over finite
fields is due to Gordon [41].

The Cantor—Zassenhaus algorithm was initially developed by Cantor and
Zassenhaus [24], although many of the basic ideas can be traced back quite
a ways. A straightforward implementation of this algorithm using fast poly-
nomial arithmetic uses an expected number of O(£2+°(1) len(q)) operations
in F.

Berlekamp’s algorithm was initially developed by Berlekamp [15, 16],
but again, the basic ideas go back a long way. A straightforward imple-
mentation using fast polynomial arithmetic uses an expected number of
o3 + i) len(q)) operations in F'; the term ¢3 may be replaced by /¢,
where w is the exponent of matrix multiplication (see §15.6).

There are no known efficient, deterministic algorithms for factoring poly-
nomials over F' when the characteristic p of F is large (even under a gener-
alization of the Riemann hypothesis, except in certain special cases).

The square-free decomposition of a polynomial over a field K of character-
istic zero can be computed using an algorithm of Yun [105] using O(¢£1*°(1)
operations in K. Yun’s algorithm can be adapted to work over finite fields
as well (see Exercise 14.30 in von zur Gathen and Gerhard [37]).

The asymptotically fastest algorithms for factoring polynomials over a
finite field F' are due to von zur Gathen, Kaltofen, and Shoup: the algorithm
of von zur Gathen and Shoup [38] uses an expected number of O(¢£2+°(1) 4
(oM len(q)) operations in F; the algorithm of Kaltofen and Shoup [51]
has a cost that is subquadratic in the degree—it uses an expected number
of O(£*#131en(q)%497) operations in F. Exercises 21.1, 21.7, and 21.8 are
based on [38]. Although the “fast” algorithms in [38] and [51] are mainly
of theoretical interest, a variant in [51], which uses O(£>5 4 ¢'t°(M len(q))
operations in F, and space for O(¢!%) elements of F', has proven to be quite
practical (Exercise 21.13 develops some of these ideas; see also Shoup [92]).

